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Re™ e
functions mn(jé? is characterized in terms of the linear span (and its

Fourier transform) of the finitely many compactly supported functions i
whose integer translates ¢(°*-3j) , 3 € z® , span the space § = S8y from

which the scale is derived. This provides a correction of similar results

stated, and proved in part, by Strang and Fix.
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SIGNIFICANCE AND EXPLANATION

In multivariate approximation, we are still groping our way toward an
understanding of just what makes a given family of approximants do a good job. As
an aid to further understanding, the people in the field consider simple models of
suitable approximants and try to establish under what circumstances such model
families can approximate every smooth function well. One such model is that of a
scale (s;) of approximating spaces §j, , with each §, obtained from some fixed
space S by scaling, i.e., by a contraction of the underlying independent variable:

Sb 2"8(’/’1)38‘51.

This idealizes the situation of a finer and finer mesh. A second idealization is
that the space S be the same everywhere, i.e., that § be invariant under integer
shifts. While spaces actually used in practice are often more complicated, it is
hoped that the knowledge arrived at under these simplifying assumptions will
nevertheless be relevant, i.e., give a feel for what is to be expected in practical
situations.

A very simple model of an effective scale (S;,) of approximants on ® is the
following: S 1is spanned by the integer-translates of one compactly supported
function © , and the space §S;, is obtained from it by scaling, i.e.,

Sh = { 7 a(j) o(e/h - I) Y.

j€2™

The approximation order obtainable from such a scale is, by definition, the
largest k so that

dist(g, Sp) = O(hX)  for all smooth g,
with the distance measured in some suitable norm.

Around 1970, several authors concerned with an analysis of the Finite Element
method characterized in several ways the functions ¢ whose associated scale
provides approximation order k . These results are gathered in papers by Fix and
Strang. The latter go further, though, and consider also the case of a scale for
which § is the space of translates of not just one, but of several compactly
supported functions, a case of more direct practical interest in several variables
where even rather simple approximants have this more complex structure. Strang and
Fix intend to characterize controlled approximation order, an order in which the
size of the coefficients a(j) of the approximant is to be constrained by the size
of g . But they do not provide a complete argument for their characterization; in
fact, their characterization is wrong, as Jia has recently shown.

The present report provides several characterizations of a related but simpler
concept, that of local approximation order, in which the approximant is constrained
to have nonzero coefficients only for «¢(*/h - j) with support near the support
of g . This provides justification for recent work by Dahmen and Micchelli and by
Jia concerning the approximation order of spans of box splines.

The responsibility for the wordinag and views expressed in this descriptive
sumwnary lies with MRC, and not with the authors of this report.
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CONTROLLED APPROXIMATION AND A CHARACTERIZATION
OF THE LOCAL APPROXIMATION ORDER

€. de Boor and R.~g. Ji»

The term “controlled approximation” was introduced in 1970 by Strang, in {8t]; see

algo [FS]. It concerns approximations of the form
Toca ¥Cy
with & a finite collection of functions on ™ of compact support and ofc the function
obtained from ¢ by convolution with some "sequence® c: R—> 2", i.e.,
e = erl’ el{»=3)cl3) .

If, more generally, ¢ 1is some function on ® , we will still just write o*c instead of
the correct hut more complicated w'(c“-) .

The function u to be approximated lies in the Sobolev space w;(l‘“) with norm

1 = ¥
W ™ Talulyp

where

-7 1wt
'“’j,p t '“"j Du P

'u'p - '“'°:P = lulx‘p({) .
We denote by ';' o(#")  the subspace of v;(i') of compactly supported functions.
The approximations are, wore explicitly, of the form
Toes By

with
O (x) 1= (x/m)/mMVP

Concerning the degree of approximation to u € w;(l‘) achievable by proper choice of the
weights cs, , Strang and Fix [SF; Theorem II] state the following result. In its statement

and subsequent analysis, the normalized multivariate monomials appear often enough to

deserve an abbreviation of their own. We will use

0k

Sponsored by the United States Army under Contract YWo. DAAG29-80-C~0041. This material is
based upon work supported by the National Science Foundation under Grant Wo. MCS-8210950.
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to stand for the function

22— R x |— xVal
(and will use standard sulti-index notation throughout). In particular, pB1e = o8,
and this holds even when B § a since then nee=o by convention. Further, vy will
denote the collection of polynomials on R® of total degree < j . Finally, £ will

-1Ex

denote the Pourier transform of f , i.e., f(£) := | e £(x)ax , with Ex the scalar

product.

Theorem SF. let ¢ be a finite subset of w'i:;(l‘) . Then the following are

equivalent:

(1) There exists a sequence (’a’|a|<k in span & vwhich satisfies

(1a) ;o(o) -1, ;o =0 on 2vE"\0;

(1b) z“at-mls; =0 on 2n8" for 0 < |af <k .

a-B
(11) There exists a sequence (*u)lal <k in span ¢ which satisfies
[]B s for 'GI <k .

ne \/

L
ts<a a-f

(iii) There exist some finitely s rted Cp 80 that ¢ := }:“. w'c,’ satisfies
$0) #0 ,but D=0 on 2v8"\0 for [af <k .

(iv) For each u € HE(I‘) . there exist weights ! so that

¢
{1va) - I gt < const_ h*"®|u| 8%0,...,k=1;
$,"Cp's,2 s x,2 ¢ W00
h, 2 2
(ivb) 20 |c¢.2 < const Iul2 .

For the very special case when m = #& = 1 , such results can already be found in
[Se). In [SF], the special case when & consists of just one function (but m |is
arbitrary) is treated first (see [SF; Theorem I])) and completely. However, for the general
case, [SF] only give a proof for the implications (i) ==> (1ii) ==> (iv) . In particular,

the validity of the implication (iv) ==> (i) has recently been questioned. This was
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finally settled by [J] who shows by a counterexample that (iv) does not imply (1)

general.

1

This raises the question of how to modify (iv) to obtain something equivalent to

RN

.

(1). This is a matter of changing the control over the form of the approximation as

lis

expressed by (ivb). 1In this connection it is very useful to recall that [DM] quote Theorem
SF in a modified form. The modification of importance here occurs in condition (iv) which

they require to hold locally, as follows:

{iv)* Por each u € H;(l’) there exist weights c‘,; so _that, for any closed domain
cC®,

h K
(iva)* ba - I, @ cil (G) < const h luly, pBen @)

h pV/p
(ivb)® Ic"(j)l } < const lul (B, (G))

{ Tormuppote/n - 1199

holds for some const and r independent of h , G, u .

Here, B4(G) := {x € F® : dist(x,G) < d} .

If (iv)* holds, then, with a reference to [St], [DM) say that & provides “controlled

Lp-approxintion of order k ". They do not comment on the fact that (iv)' is a

strengthening of (iv), and refer to [SF] for a proof of the implication (iv)' ==> (1).

As it turns out, (iv)' does indeed imply (i). But it is the localness rather than the

control that dces the job. For this reason, we propose here to abandon the notion of

“controlled approximation order” in favor of "local approximation order". We say that ¢

provides "local Ib-npproxiution of order k " in case the following condition holds:

(iv)" Por each u € w;(i‘) there exist weights c‘q‘, 80 _that

h k
[ ) 1 - »,
(iva) u- L, @rc l, < const h l“'k,p '
{ivb)" c";(j) = 0 whenever dist(jh, supp u) > r

holds for some const and some r independent of h and u , with

SR :
S O e A
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B (x) = ¢{x/h) .
It is clear that (ivb)' is stronger than both (ivb) and (ivb)*®, but (ivb) and (ivb)" are ¢
not comparable. As we are about to show, (iv)" is the right modification of (iv) to give
equivalence with (i). This shows that also (iv)' ==> (i) and so validates the version of

Theorem SPF in [DM].

Theorem. let ¢ be a finite subset of wg' c(l") « Then the following statements are
o equivalent:

b
. (1°) There exists a sequence (*¢)|°| <k in span ¢ which satisfies

(1%0) $5(0) =1, ¥, =0 on 2¢8™\0 s

B‘ -
(1%b) Lo . (10179, o =0 on 2r2™\0 for 0 < |a| <k .

(2*) There exists a sequence “ﬂ)hl <x in span ¢ such that

0% - 2, 'a-s'”B € 7g)-1 for lo] <x.

(3°) There exist some finitely supported Cp 80 that ¥ := t“. q»'t:,\° satisfies
0%- v0% €wgy for lal <x.

(4°) ror all p € {1,#) , ¢ provides local Lp-amxoxiuuon order k .

(5¢) Por some p € [1,#] , & provides local Lp-lggrox:l.ution order k .

Remarks. Condition (1°) differs from (i) in that the latter requires, additionally,
that zsm"“’]a;u-s = 0 at O . Already [DM]) prove that it is possible to get away with
the weaker condition (1°).

Condition (2°¢) is, offhand, weaker than (ii), but an inductive argument leads from
(2°) o (i1).

Condition (3*) seems more useful to us in applications than the (equivalent) condition

(iii). We note that induction gives the seemingly stronger statement

(3°)' There exist some finitely supported Cp 30 that ¢ := t'@“ vo"cw satisfies

%= 1% for Ja} <k .

'
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The asserted equivalence between (4°) and (5°¢) shows that one might as well drop the

qualifier "Lp-' and just speak of the local approximation order provided by ¢ .

Proof of the theorem. While the main point of this note is the implication (5°) ==>
{1*), we give a proof of the entire implication cycle (1°) ==> (2¢) ==) .., ==> (1°). The
arguments for (1°¢) ==> (2¢) ==) (3°¢) are adaptations of those in [SF].

(1) ==> (2°). Observe that the Fourier transform of ¥(x - *){}® is
[m]ste‘“"“;(--)) . Hence, by Poisson's Summation formula, we have

-1€x ° Y -2:13):[

B\ o é - - 101 B V(o
v ) = I, [iD] (e v E))'E_m L gl e 101" Ty(-2%3) .

It follows that

8 a 1.-2113( )

A/ 0

B-v
z“a - {-iD} 06_8(-213)

"Iy oca Tyen

-2713(0) Y - -
I Tl {~iD] (=273)

B-Y;
B-y<a-Y (a=Y)~(B-Y)

- Y -~ 5,
n + z1<° {} tG‘C‘Y[ 1D] * 6(0) .

Y-
the last equation by {(1°).

(2%) ==> (3°), With y := (k,...,k), the monomial [}Y and its integer shifts span
the space ﬂk(l)x !lk(l) « This implies that there exist finitely supported sequences
cg s° that

(17%cy = NY8 for B<y.
On applying pY"% to both sides, we find that [)“’cs - U“’B , hence
ce'[]"' 08 on 2 for a B <y.

Now set

p = 2|B|<k Ws'cs .

Lt TP R z|6|<k*8.“°—s - Tgea¥g U € 0% g
the inclusion by (2°).
The proof of (3°) ==> (4°) follows the argument for [BH; Corollary to Theorem 6].

This leaves
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(5°) ==> (1*). We approximate a tensor product of univariate B-splines, namely the

function
4

»m
ul(x) := W (x(v))
“_1Hk+1

? s

E'. with .
- Meag(t) o= -5, L L EBhe ok, cen
(see [Sc)). Since u € H;(lp) for any p € [1,%) , we can find weights cg so that (iva)"
,3 and (ivb)®™ hold (whatever the p might be). Set
- T Y
and consider the Fourier-lLaplace transform
_ £z) = [ 1 ™gxyax , 2 € &,
? of the error f := u - uy . Since u has compact support, so does u, by (ivbh)", hence so
E does f , uniformly in h . This means that supp f lies in some ball B, of finite
= radius a independently of h . Consequently
. Ig(z)l - Ifnae-izxf(x)dxl < e"m"con.t‘lflp
- while, by (iva)",

k
lflp € const h lulk'p

wr

This implies that
: |£(z)| € const hX for tImzt < const .

We can therefore invoke Cauchy's formula (see, e.9., [R]) to get the estimate

(1) 'D"fl.(l) < const nk o

The Fourier transform of u is well-known (see [Scl); it is

- P m
: alz) = " c(zon**!
:- V=9

with C(t) := (sin t/2)/(t/2) whittaker's Cardinal function. From this we deduce that

. (2) u(0) = 1

A and

N (3) lim (0% (xm)mk = 0 for x € Mo,
o h+0

hence, by (1), u, must satisfy corresponding conditions.

We now compute uh « Since




— Ls - v ey
RO SRR NN LR S SR A N O P SACIAC IS e e 4 S e -8 A 5 AR S Ay e me e e o
IO TR AR S A R e e e

Jem 12 g(xm - j)ax = h® @(hz)e”ihEI |

we find that
- - h
uh(z) ZW w(hz)vw'o(z)
with

- h® h ~ihzj
v’q’,'o(z) = 0" £ fegle

Thus, from (1) and (2),

(4 lim Z.9(0) V" _(0) = 1.
ol 9,0

Further

ar? h - |8} .82 _ivy Ja=Bl_h
)% (wtha)vy ((2)) = Zg wPlDIT0the) (-im) T lvp o (e)

P ,Q'B
with

h | h Y -ihzj
v‘p'Y(z) := h lj cw(j) {j]'e

each a (2v/h)=-periodic function. (Note that, for Y = 0 , this agrees with the earlier

definition, as it should.) This implies that

h -
V5 ((213/m) v“;’y(o) .

and therefore (1) and (3) give

ol =gy la-8l 15 8 LI
L I, Iy n1% 019 01 Pprany) ,a-pl0/m* =0,

hence, for |a] <k ,

10} 8¢ -
(s) Ln I, Iy, (~101%0(2r3) Vh.a-gl®) = 0 for 3¢ 20 .

From (4) and (5), we deduce (1°) as follows. By (4), we cannot have ¢(0) = 0 for
every ¢ ¢t & . without loss of generality, we can therefore assume that, for some x ¢ ¢ ,
X(0) = 1 while &(0) = 0 for all ¢ ¢ #\x . In particular, this implies with (4) that

h -
linh’ovx’o(O) = 1 . Now consider the space S of all vectors w "w.v’ for which

lim I I

h
6) =0 .
e o Pyl Yo, "o

We claim that 51 contains a vector w' with vi'o = 1 ., Indeed, if vi o™ 0 for
.
all w' t 8l , then (S8l)l = § would contain the unit vector (GOXGYO) + hence

h -
linh’ovx'o(O) 0 would follow.
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With this, define

.= ' .
Yy T e vYoy?

N -
b Then

”~

‘ = p = ! . - .
VO(O) Z(p w“o'ocp(O) vx'ox(O) 1
Purther, from (5),
' —in1 8o -

Ly Laca Yo, a-l"iD] @(2¥3) = 0 for la| < x ana j € z™\0

and this says that
8"
Lacql~10] VYo-g =0 on 292™\0 for |a] ¢k,

as we wanted to show. |||

Remark. In contrast to [SF], we assume ¢ only to lie in Lp . For this reason, we
do not get (iva), i.e., we do not get simultaneous approximation to derivatives. But this
is easily obtained under the assumption that ¢ 1lie in an appropriately smoother space,
using the quasi-interpolant constructed in the proof of (3°) ==> (4). In this connection,
.:: we note that, using (3°) in the equivalent formulation (3°)’, such a quasi-interpolant

for u takes the particularly simple form

s e a1 @
s ‘o e
)

s
§

@
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